Matematyka wszystkie tematy lekcji

Lista tematów - podstawa programowa
Freepik.com

Poniżej znajdziesz listę wszystkich tematów na które dzieli się nowa podstawa programowa z matematyki dla wszystkich rodzajów szkół (oraz kilka dodatkowych, które warto poznać aby lepiej przyswoić pozostałe).

() [] ** ^ W nawiasach okrągłych zamieściliśmy klasę szkoły średniej, w której dane zagadnienie najprawdopodobniej będziesz przerabiać. Czasami dodatkowo w nawiasie kwadratowym znajdziesz klasę dla uczniów technikum (jeśli jest inna niż dla liceum). Gwiazdki dotyczą poziomu rozszerzonego. Daszek „^” oznacza tematy występujące w kilku miejscach na tej liście (pasujące do więcej niż jednej kategorii.

Prośba o pomoc:

Jeżeli jesteś nauczycielem matematyki i wiesz jak lepiej podzielić poniższe tematy, lub wiesz że warto coś jeszcze tutaj dopisać to proszę skontaktuj się ze mną lub zamieść komentarz poniżej.

Spis treści

Rozgrzewka

Liczby rzeczywiste

Wyrażenia algebraiczne

Równania i nierówności oraz układy równań

Funkcje

Planimetria + geometria płaska

Trygonometria

Geometria analityczna na płaszczyźnie kartezjańskiej

Stereometria

Ciągi

Kombinatoryka

Rachunek prawdopodobieństwa i statystyka


0. Rozgrzewka

Warto to poznać lub sobie przypomnieć


Ogólne


Logika
Głównym celem matematyki jest nauka logicznego myślenia, umiejętność liczenia to tylko „skutek uboczny” dlatego warto opanować logikę.

  • zdania, zaprzeczania zdania, formy zdaniowe
  • spójniki logiczne
  • prawa rachunku zdań
  • dowodzenie implikacji i równoważności
  • definicja, twierdzenie, dowód


I. Liczby rzeczywiste

Wprowadzenie (1)

Zbiory i przedziały (1)

Wartość bezwzględna (1)
Własności wartości bezwzględnej (1
)
Procenty, Punkt procentowy (1)
Przybliżenia, błąd bezwzględny i błąd względny oraz szacowanie

Potęga (1)

Pierwiastek (1)
(kwadratowy, sześcienny, pierwiastek iloczynu i ilorazu, pierwiastek n-tego stopnia, pierwiastek nieparzystego stopnia z liczb ujemnych)

Logarytm i jego własności (1) [2]

  • Pojęcie logarytmu i logarytmu dziesiętnego
  • Twierdzenia o: logarytmie iloczynu, logarytmie ilorazu, logarytmie potęgi,
  • ** wzór na zamianę podstawy logarytmu


II. Wyrażenia algebraiczne

Wprowadzenie (1) [1]

  • jednomian, jednomian uporządkowany, jednomiany podobne, suma algebraiczna,
  • przekształcanie i działania na wyrażeniach algebraicznych (redukcja wyrazów podobnych, dodawanie i odejmowanie sum, mnożenie przez jednomian, mnożenie sum i doprowadzanie do prostej postaci, wyłączanie wspólny czynnik przed nawias)


Wzory skróconego mnożenia (1)
(do kwadratu, do sześcianu, dla n-tych potęg)

Twierdzenia i dowiedzenia twierdzeń (1)

  • definicja twierdzenia w formie implikacji i równoważności
  • założenie i teza
  • zasada dowodzenia metodą wprost i nie wprost
  • różnica pomiędzy twierdzeniem, a hipotezą


Silnia
Symbol Newtona – algebraiczne właściwości
Zwór dwumianowy Newtona
Trójkąt Pascala


Wielomiany (2)


III. Równania i nierówności oraz układy równań

Rozwiązanie równania i nierówności  (1)

  • pojęcie równania, równania równoważne, równania tożsamościowe, równania sprzeczne, postać proporcji, sposoby przekształcania równań,
  • ^ wartość bezwzględna
  • wielkość proporcjonalna i odwrotnie proporcjonalna
  • pojęcie nierówności, zbiór rozwiązań nierówności, nierówność równoważna,
  • interpretacja geometryczna wartości 

Układy równań

  • Rozwiązywanie układów równań: metodą podstawiania i metodą przeciwnych współczynników
  • Równania liniowe z dwiema niewiadomymi
  • Układy oznaczone, nieoznaczone i sprzeczne,
  • Analiza zadania tekstowego
    Równania liniowe i nierówność liniowa z parametrami (?2)

Równania kwadratowe

  • pojęcie równania kwadratowego
  • wzór na wyróżnik równania kwadratowego – obliczanie delty
  • wzór na rozwiązania równania kwadratowego
  • wzory Viète’a
  • równania i nierówności kwadratowe z jedną niewiadomą (2)
  • równania sprowadzalne do równań kwadratowych [2]
  • równania i nierówności kwadratowe z parametrem [2]
  • równania i nierówności kwadratowe z wartością bezwzględną i parametrem [2]
  • Równania wielomianowe (2)
  • Równania wymierne (2)
  • Nierówności wielomianowe [2]
  • Nierówności wymierne [2]
  • Równania i nierówności z wartością bezwzględną [2]
  • ^własności wartości bezwzględnej
  • Układy równań drugiego stopnia [2]
  • ^ równania i nierówności wykładnicze (3)
  • ^ równania logarytmiczne (3)
  • Algebraiczne metody rozwiązywania układów równań pierwszego stopnia z dwiema niewiadomymi (1) [1]
  • Graficzna metoda rozwiązywania układów równań pierwszego stopnia z dwiema niewiadomymi [1]
  • Interpretacja geometryczna układu równań liniowych (1)
  • ?Równania kwadratowe z jedną niewiadomą [1]
  • ?Nierówności kwadratowe z jedną niewiadomą [1]
  • ?Układy równań drugiego stopnia z dwiema niewiadomymi (2)


IV. Funkcje

  • Pojęcie funkcji (1)
  • Sposoby opisywania funkcji [1]
  • Dziedzina funkcji liniowej, argument, wartość funkcji,
  • Zbiór wartości funkcji, wartość w punkcji,  największa i najmniejsza wartość, miejsce zerowe,
  • Monotoniczność funkcji, funkcja rosnąca malejąca i stała
  • Szkicowanie wykresu funkcji (1) [1]
  • Odczytywanie wartości z wykresu
  • Funkcje różnowartościowe

  • Wektor
    ** wektory na płaszczyźnie i w układzie współrzędnych, początek i koniec wektora, wektor zerowy, kierunek, zwrot długość, działania na wektorach

Przekształcenia wykresów funkcji (1)
(przesunięcie równoległe wzdłuż osi OX, przesuniecie równoległe wzdłuż osi OY, symetria środka,symetria osiowa)

Funkcja liniowa (1) [1]

  • proporcjonalność prosta i odwrotna
  • wykres, miejsce zerowe
  • współczynnik kierunkowy
  • położenie dwóch prostych na płaszczyźnie
  • i wiele więcej ???

Funkcja kwadratowa (1)(2)

  • postać ogólna i kanoniczna
  • wykres funkcji kwadratowej, parabola
  • ekstremum funkcji
  • miejsce zerowe
  • wzór funkcji kwadratowej w postaci iloczynowej
  • szkicowanie wykresu funkcji
  • wyznaczanie wzoru funkcji za podstawie własności
  • badanie funkcji kwadratowej
  • najmniejsza oraz największa wartość funkcji w przedziale domkniętym
  • ^równania i nierówności kwadratowe
  • wykres funkcji kwadratowej z wartością bezwzględną
  • ^ wzory Viete
  • ^ równania i nierówności kwadratowe z parametrem

Własności funkcji (1) [1]
(dla każdej funkcji z osobna)


Funkcja homograficzna [2]
Funkcja f(x)= a /x  [2]

Funkcja wykładnicza (3) [2]

  • powtórka potęga o wykładniku rzeczywistym
  • własność
  • przekształcanie wykresu funkcji wykładniczej
  • proste równania wykładnicze
  • proste nierówności wykładnicze 

Funkcja logarytmiczna (3) [2]

  • własności
  • przekształcanie wykresu funkcji logarytmicznej
  • ^ równania i nierówności logarytmiczne

Funkcje wielomianowe (2)

Analiza matematyczna

  • ^ Granice ciągów
  • granica funkcji [3]
  • granica w punkcie
  • granica jednostronna w punkcie
  • granica w nieskończoności
  • granica niewłaściwa
  • ciągłość funkcji w punkcie
  • ciągłość funkcji w zbiorze
  • asymptoty wykresu funkcji
  • pochodna funkcji w punkcie [3]
  • ekstrema lokalne funkcji
  • największa i najmniejsza wartość funkcji w przedziale
  • ciągłość funkcji [3]
  • zmienność funkcji


V. Planimetria + geometria płaska

Wprowadzenie – Punkt, prosta, odcinek, półprosta, kąt, figura wypukła, figura ograniczona
Odległość dwóch punktów, dwóch prostych, punku i prostej, symetralna odcinka, dwusieczna kąta
Wielokąty (1)
Twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa (1)

  • Rodzaje trójkątów
  • Kąty w trójkącie (1)
  • Punkty specjalne w trójkącie (1)
  • Trójkąty przystające (1)
  • Trójkąty podobne (1)
  • Trójkąty prostokątne (2)
  • Twierdzenie Pitagorasa i odwrotne do niego
  • Zastosowania trygonometrii w planimetrii (2)
  • Wielokąty foremne (2)
  • Czworokąty (2)
  • Okrąg i koło
  • Pole wycinka koła
  • Długość okręgu i pole koła [2]
  • Okrąg i prosta [2]
  • Wzajemne położenie dwóch okręgów
  • Twierdzenie o stycznej i siecznej
  • Kąty i koła
  • Kąty środkowe i kąty wpisane (2)
  • Okrąg opisany na trójkącie i okrąg wpisany w trójkąt (2)
  • Okrąg opisany na czworokącie i okrąg wpisany w czworokąt [2]
  • Twierdzenie sinusów i twierdzenie cosinusów (2)


VI. Trygonometria

  • Pojęcie miary konta
  • Definicje funkcji trygonometrycznych (2)
  • Wartości funkcji trygonometrycznych
  • Definicje funkcji trygonometryczne kąta wypukłego [2]
  • Związki między funkcjami trygonometrycznymi (2) [2]
  • Twierdzenia sinusów i cosinusów
  • Kąt obrotu [3]
  • Miara łukowa kąta [3]
  • Definicje funkcji trygonometrycznych dowolnego kąta [3]
  • Funkcje okresowe [3]
  • Wykresy funkcji trygonometrycznych [3]
  • Tożsamości trygonometryczne [3]
  • Sinus, cosinus i tangens sumy i różnicy kątów [3]
  • Wzory redukcyjne [3]
  • Równania i nierówności trygonometryczne [3]


VII. Geometria analityczna na płaszczyźnie kartezjańskiej

Układy współrzędnych

  • odcinek w układzie współrzędnych
  • współrzędne środka odcinak
  • wektor w układzie współrzędnych [1]
  • kąty pomiędzy niezerowymi wektorami {3}

Równanie prostej na płaszczyźnie (1) [1]

  • kierunkowe prostej
  • ogólne prostej
  • równoległość i prostopadłość prostych (3)
  • odległość między dwiema prostymi równoległymi
  • odległość punktów w układzie współrzędnych, (3) [3]
  • odległość punktu od prostej (3) [3]
  • Pole trójkąta {3}
  • Pole wielokąta {3}
  • ^ Układy nierówności liniowych z dwiema niewiadomymi [1]
  • Zastosowanie układów równań do rozwiązywania zadań z geometrii analitycznej
  • Równanie okręgu (3) [3]
  • Nierówność opisująca koło
  • Wzajemne położenie prostej i okręgu (3) [3]
  • Styczna do okręgu
  • Wzajemne położenie dwóch okręgów [3]
  • Jednokładność
  • Symetrie w układzie współrzędnych (3) [3]


VIII. Stereometria

  • Proste i płaszczyzny w przestrzeni (4) [4]
  • Rzut równoległy na płaszczyznę
  • Prostopadłość prostych i płaszczyzn
  • Rzut prostokąty na płaszczyznę
  • Twierdzenie o trzech prostych prostopadłych
  • Kąt między prostą a płaszczyzną, kąt dwuścienny (4) [4]Graniastosłupy (4) [4]
  • Ostrosłupy (4) [4]
  • Siatka wielościanów
  • Pole powierzchni wielościanów
  • Objętość figur w przestrzeni
  • Przekroje prostopadłościanów (4)
  • Przekroje wielościanów [4]
  • Bryły obrotowe (4) [4]
  • (Pole powierzchni, objętość)
  • Bryły podobne (4) [4]
  • Zastosowania trygonometrii w stereometrii (4) [4]
  • Zagadnienia optymalizacyjne [4]


IX. Ciągi

  • Pojęcie ciągu (3)
  • Ciągi określone rekurencyjnie (3)
  • Monotoniczność ciągu (3)
  • Ciąg arytmetyczny (3)
  • Ciąg geometryczny (3)
  • Granica ciągu [3]
  • Szereg geometryczny [3]


X. Kombinatoryka

  • Reguła mnożenia, reguła dodawania (?3)(4) [4]
  • Permutacje, wariacje bez powtórzeń i z powtórzeniami, kombinacje [4]
  • Wzór dwumianowy Newtona i trójkąt Pascala [4]


XI. Rachunek prawdopodobieństwa i statystyka

  • Doświadczenie losowe {3}
  • Zdarzenia, działania na zdarzeniach {3}
  • Odczytywanie i interpretacja danych statystycznych (3)
  • Prawdopodobieństwo klasyczne (?3) (4) [4]
  • Wartość oczekiwana (4) [4]
  • Własności prawdopodobieństwa [4]
  • Prawdopodobieństwo warunkowe [4]
  • Twierdzenie o prawdopodobieństwie całkowitym i wzór Bayesa [4]
  • Schemat Bernoullego [4]
  • Niezależność zdarzeń

Statystyka

  • Średnia arytmetyczna, mediana, dominanta
  • Średnia ważona, odchylenie standardowe, wariancja
  • Skala centylowa
  • Średnia z próby
  • Mediana z próby
  • Moda z próby


Zostaw swoją ocenę
Poprzedni Następny

Jest tego więcej...


					4xP Ściąga i Podręcznik PLC Podręczniki

4xP Ściąga i Podręcznik

Podręczny Podręcznik Programowania PLC

Wszystko o programowaniu PLC na jednej kartce Po przeszkoleniu ponad 2000 kursantów z zakresu programowania sterowników PLC uświadomiłem sobie, że wyjątkowo wiele czasy tracą oni na poszukiwaniu informacji w podręczniku, zamiast skoncentrować się na rozwijaniu swoich umiejętności programistycznych. Dlatego zdecydowałem się przygotować i za darmo udostępnić kompendium skompresowanej wiedzy w formie podręcznej dwustronnej ściągi i […]


					Połączenie OR i AND PLC

Połączenie OR i AND

Podstawy j. LAD

Z tej prezentacji dowiesz się: Rodzaje połączeń Zestyki (a także cewki, które są mniej intuicyjne) można połączyć na dwa sposoby: szeregowo (jeden za drugim) lub równolegle (jeden pod drugim). Rodzaj połączenia wpływa na logiczny warunek wysterowania cewki. AND – iloczyn logiczny – „i’ Połączenie szeregowe wymaga od nas przytrzymania dwóch przycisków (P0 i P1)w tym […]


					CALM talks Nasze projekty

CALM talks

Porozmawiajmy o edukacji

Jeżeli trafiłeś na tą stronę to pewnie już wiesz o co chodzi w tym projekcie i możesz od razu wypełnić ankietę klikając w link zamieszczony w poniższym box-ie. Jeśli jednak nie do końca wiesz o co chodzi w projekcie CALM talks to zapraszam do lektury tego artykułu i na końcu wypełniania ankiety. Jeśli od razu […]


					Działania arytmetyczne PLC

Działania arytmetyczne

ADD, MUL, SUB, DIV, CALCULATE

Po co mi to? Bez tych bloczków nie obliczysz ilości wyprodukowanych sztuk, średniego koszt zużycia materiału, czy liczby wciśnięć przycisku start. Z kolei bloczek CALCULATE pozwoli Ci to zrobić znacznie szybciej. Użycie bloczków arytmetycznych W celu wykorzystania bloczków operacji arytmetycznych ( ADD – dodawanie, SUB – odejmowanie, MUL – mnożenie, DIV – dzielenie, MOD – […]


					Historia maszyny parowej Artykuły

Historia maszyny parowej

i ewolucja zasady działania

Po kilku bardzo ciemnych wiekach w Europie (świat rozwijał się wtedy na Wschodzie tym bliższym i dalszym), zwanych dzisiaj Średniowieczem, gdzie całą swoją uwagę poświęcaliśmy wysławianiu Boga. Budowaniu ku jego chwale świątyń (dla architektury i budownictwa wcale to nie był ciemny okres) oraz wymyślaniu machin wojennych, aby mordować tych, którzy nie chcieli wierzyć w naszego […]


					#Gegra Szkoła 4.0

#Gegra

Wprowadzenie - Przedmiot geografia

Jeszcze uzupełniamy treści – wróć tutaj jutro.


					Ułamki Szkoła 4.0

Ułamki

Wszystko na ten temat i sporo zadań

Na tej stronie znajdziesz: Dlaczego na jednej stronie zamieszczamy zakres tematów dla różnych klas? Ponieważ nigdy nie jest za późno aby powrócić do podstaw (bez nich nie pójdziesz dalej) i nigdy nie jest za wcześniej aby zrobić coś z poza swojego zakresu (nie chcemy hamować Twojego potencjału). Słowem wstępu dla niewtajemniczonych Jesteś pierwszy raz na […]


					Funkcje Szkoła 4.0

Funkcje

Funkcje wielomianowe

Na tej stronie znajdziesz: Dlaczego na jednej stronie zamieszczamy zakres tematów dla różnych klas i szkół, a nawet dla studentów? Ponieważ nigdy nie jest za późno, aby powrócić do podstaw (bez nich nie pójdziesz dalej) i nigdy nie jest za wcześniej, aby zrobić coś spoza swojego zakresu (nie chcemy hamować Twojego potencjału). czytaj więcej: O […]


					Problemy z programowaniem PLC

Problemy z programowaniem

Najczęstsze błędy podczas programowania w STEP7 - j. LAD

Prezentacja kierowana jest dla osób, które uczestniczyły w moich szkoleniach i chcą sobie zdobytą wiedzę odświeżyć. Nie jest to prezentacja dla osób, które nie posiadają żadnej wiedzy z zakresu programowania sterowników. Plan prezentacji 1.Założenia dla omawianego układu.2.Odwzorowanie fizycznych zestyków w języku LAD.3.Układ podtrzymania.4.Nieprawidłowe użycie cewki w networku.5.Dublowanie cewek w bloku.6.Negacja sygnału.7.Różnica pomiędzy napięciem, a stanem […]


					Wielomiany Bez kategorii Szkoła 4.0

Wielomiany

Wyłączenie jednomianu przed nawias

Na tej stronie znajdziesz: Dlaczego na jednej stronie zamieszczamy zakres tematów dla różnych klas i szkół, a nawet dla studentów? Ponieważ nigdy nie jest za późno, aby powrócić do podstaw (bez nich nie pójdziesz dalej) i nigdy nie jest za wcześniej, aby zrobić coś spoza swojego zakresu (nie chcemy hamować Twojego potencjału). czytaj więcej: O […]


					Przykładowe rozwiązania zadań PLC

Przykładowe rozwiązania zadań

Poglądowe

Byłeś na moim szkoleniu? W takim razie to co znajdziesz poniżej może Ci się przydać 😉


					LAOS - pomagamy Inne

LAOS - pomagamy

Po pierwsze EDUKACJA

W tym poście dowiesz się o co chodzi z akcją „Laos – po pierwsze edukacja”. Czego brakuje nam do pełni szczęścia i co oznacza odniesienie sukcesu w życiu. Dlaczego Laos i gdzie to właściwie leży? Kto to jest Keo i jakim cudem poznała Karolinę (jaką Karolinę?). Powiem Ci też dlaczego zwyczajne ołówki, zeszyty i kredki […]

Subscribe
Powiadom o
guest
2 komentarzy
najstarszy
najnowszy oceniany
Inline Feedbacks
View all comments
co gdy pracodawca nie wypłaca wynagrodzenia

Artykuł jest bardzo interesujący i dobrze przedstawia problematykę nauczania matematyki w szkole średniej. Podoba mi się, jak autor podkreśla potrzebę zmiany podejścia do tej nauki w kontekście społeczeństwa cyfrowego. Ważne jest, że tekst podaje konkretne przykłady, jak można stymulować zainteresowanie matematyką u uczniów i jak wykorzystywać nowoczesne technologie w procesie nauczania. Cieszę się, że ktoś wreszcie zauważa potrzebę zmiany w systemie edukacji matematycznej.

co jeśli umowa kończy się w trakcie zwolnienia lekarskiego

Ciekawy artykuł na temat roli matematyki w szkole średniej. Autor trafnie zauważa, że często uczniowie nie rozumieją, do czego tak naprawdę potrzebują matematyki w życiu codziennym. Wprowadzenie nowych praktycznych zastosowań matematyki w programach nauczania może być dobrą drogą do zwiększenia zainteresowania uczniów tym przedmiotem. Ważne jest również uwzględnienie różnych stylów uczenia się, aby wszyscy uczniowie mieli szansę osiągnąć sukces. Myślę, że ta adaptacja do nowych czasów w edukacji matematycznej jest bardzo potrzebna.

Zamknij